On asymptotic expansions for the fractional infinity Laplacian

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-local Tug-of-war and the Infinity Fractional Laplacian

Motivated by the “tug-of-war” game studied in [12], we consider a “non-local” version of the game which goes as follows: at every step two players pick respectively a direction and then, instead of flipping a coin in order to decide which direction to choose and then moving of a fixed amount > 0 (as is done in the classical case), it is a s-stable Levy process which chooses at the same time bot...

متن کامل

Singular Asymptotic Expansions for Dirichlet Eigenvalues and Eigenfunctions of the Laplacian on Thin Planar Domains

We consider the Laplace operator with Dirichlet boundary conditions on a planar domain and study the effect that performing a scaling in one direction has on the spectrum. We derive the asymptotic expansion for the eigenvalues and corresponding eigenfunctions as a function of the scaling parameter around zero. This method allows us, for instance, to obtain an approximation for the first Dirichl...

متن کامل

Optimal Regularity for the Pseudo Infinity Laplacian

In this paper we find the optimal regularity for viscosity solutions of the pseudo infinity Laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem.

متن کامل

A Hölder infinity Laplacian

In this paper we study the limit as p →∞ of minimizers of the fractional W -norms. In particular, we prove that the limit satisfies a non-local and non-linear equation. We also prove the existence and uniqueness of solutions of the equation. Furthermore, we prove the existence of solutions in general for the corresponding inhomogeneous equation. By making strong use of the barriers in this cons...

متن کامل

Heat kernel asymptotic expansions for the Heisenberg sub-Laplacian and the Grushin operator.

The sub-Laplacian on the Heisenberg group and the Grushin operator are typical examples of sub-elliptic operators. Their heat kernels are both given in the form of Laplace-type integrals. By using Laplace's method, the method of stationary phase and the method of steepest descent, we derive the small-time asymptotic expansions for these heat kernels, which are related to the geodesic structure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asymptotic Analysis

سال: 2021

ISSN: 1875-8576,0921-7134

DOI: 10.3233/asy-211686