On asymptotic expansions for the fractional infinity Laplacian
نویسندگان
چکیده
منابع مشابه
Non-local Tug-of-war and the Infinity Fractional Laplacian
Motivated by the “tug-of-war” game studied in [12], we consider a “non-local” version of the game which goes as follows: at every step two players pick respectively a direction and then, instead of flipping a coin in order to decide which direction to choose and then moving of a fixed amount > 0 (as is done in the classical case), it is a s-stable Levy process which chooses at the same time bot...
متن کاملSingular Asymptotic Expansions for Dirichlet Eigenvalues and Eigenfunctions of the Laplacian on Thin Planar Domains
We consider the Laplace operator with Dirichlet boundary conditions on a planar domain and study the effect that performing a scaling in one direction has on the spectrum. We derive the asymptotic expansion for the eigenvalues and corresponding eigenfunctions as a function of the scaling parameter around zero. This method allows us, for instance, to obtain an approximation for the first Dirichl...
متن کاملOptimal Regularity for the Pseudo Infinity Laplacian
In this paper we find the optimal regularity for viscosity solutions of the pseudo infinity Laplacian. We prove that the solutions are locally Lipschitz and show an example that proves that this result is optimal. We also show existence and uniqueness for the Dirichlet problem.
متن کاملA Hölder infinity Laplacian
In this paper we study the limit as p →∞ of minimizers of the fractional W -norms. In particular, we prove that the limit satisfies a non-local and non-linear equation. We also prove the existence and uniqueness of solutions of the equation. Furthermore, we prove the existence of solutions in general for the corresponding inhomogeneous equation. By making strong use of the barriers in this cons...
متن کاملHeat kernel asymptotic expansions for the Heisenberg sub-Laplacian and the Grushin operator.
The sub-Laplacian on the Heisenberg group and the Grushin operator are typical examples of sub-elliptic operators. Their heat kernels are both given in the form of Laplace-type integrals. By using Laplace's method, the method of stationary phase and the method of steepest descent, we derive the small-time asymptotic expansions for these heat kernels, which are related to the geodesic structure ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asymptotic Analysis
سال: 2021
ISSN: 1875-8576,0921-7134
DOI: 10.3233/asy-211686